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1. Introduction

It has recently been shown [2] that there is a finite simply-connected CW-complex
X whose loop space has an irrational Poincaré series, i.e.,

Pox(2)= ¥ Rankgy H,(2X; Q)"
n=0
is not a rational function of z. A space with this property is said to be Q-irrational.
In this paper we show that any Q-irrational CW-complex must have at least four
cells, excluding the base point. We also construct explicitly a four-cell Q-irrational

space W with dim W= 6 and prove that this dimension cannot be reduced without
increasing the number of cells.

2. Lower bounds on the size of W

We call on several well-established facts in proving that a four-cell complex in
dimension five or lower or a three-cell complex in any dimension is £2-rational.

Theorem A. Let X be a 1-connected CW-complex. There is a CW-complex Y with
the rational homotopy type of X such that Y has one cell for each generator of
H«(X; Q). If X is finite, Y has the same number or fewer cells in each dimension
as X. Furthermore, Y may be constructed so that for each n=1, the (n+1)-cells of
Y are attuched to the (n -1)-skeleton Y" .

This is a consequence of Sullivan’s theory of minimal models [7].

Theorem B. Let f: SX —SY be a map between rwo suspensions, with X and Y path-
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connected, and let Z be the mapping cone of f. Z is Q-rational if and only if the
quotient Hopf algebra H«(QSY; Q)/<im(2f)s) has rational Hilbert series.

Here H(Q2SY; Q) is viewed as a graded Hopf algebra over Q and (im(2f)s)
denotes the two-sided ideal generated by the image of H.(2SX; Q) under (2f)..
Theorem B is proved in [5].

Theorem C. If X and Y are simply connected Q-rational complexes, then XVY is
Q-rational.

An exact formula for Pgx, y)(2) in terms of Pox(z) and Pqy(2) is given in |5].

Theorem D. Let H be a free associative graded algebra, finitely generated over a
field F, and let w be a singlc homogeneous element. The quotient algebra G = H/{w)
of H by the two-sided ideal w generates has a rational Hilbert series.

This is proved in [3].
An immediate corollary of these is:

Lemma 1. Let f:S™—V* S with m=2, d,=2, and let Z be the mapping cone
of f. Then Z is Q-rational.

Proof. If we H, (2S™; Q) generates the ring H«(22S™; Q), Theorem B implies
that Z is Q-rational if

H,(g v st Q) /(Qf)s(w))

has a rational Hilbert series. This follows from Theorem D, since by [4]
H(QV! 8% 0) is a free associative algebra.

Lemma 2. A l-connected CW-complex X with three or fewer (positive dimen-
sional) cells is Q-rational.

Proof. Since

. Q ifk=n,or k=2n-1 and n is even
L, (SMH®O0 = ’
{50 {0 otherwise,

Theorem A implies that the only rational homotopy types for a two-cell complex
Y are (pt), S™'vS™, and X0=52”Ug ¢*", where the attaching map for the last has
non-zero Hopf invariant. Each of these is Q-rational by Lemma 1. If there is a third
cell, say in dimension m = dim X, it musi be attached to one of these complexes. The
only case not covered by Lemma 1 is that of a mapping cone of f:S™ ! - X,. The
only non-trivial rational homotopy of X, in dimensions 4n—1 and above is
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Men-1(Xo)® Q= Q, generated, say, by [A]. Letting = denote rational homotopy
equivalence, we have either X=X,VS™, whence Q-rati aality follows from
Theorem C, or X=X,U,., e*" for some scalar A. In the latter case, the Serre spec-
tral sequence in cohomology for the path fibration over X gives

Pox(@=(1+z""H(1 -2,

Lemma 3. Let X be a finite 1-connected CW-complex with dim X<5. Then X has

the rational homotopy type of a mapping cone of a map between two wedzes of
spheres,

f:V 8-V s
Jj=1 i=1
where each m;=3 or 4 and each d;=2 or 3.

Proof. This follows directly from Theorem A. We may assume that the 4- and
5-cells of X are attached directly to the 3-skeleton, whicl. in turn is obtained by
attaching cells to the base point.

Lemma 4. Let X be a 1-connected CW-complex with dim X<5. Suppose that

H.(X; 7)) has four or fewer generators, e.g., if X has four of fewer cells. Then X
is Q-rational.

Proof. Combining Theorem A and Lemma 3, we see that X is a mapping cone as
in Lemm 3, where r+ k<4. By Theorem B, the rationality of Poy(2) is equivalent
to the rationality of the Hilbert series of a certain associative algebra G, which has
a finite presentation with k generators and r relations. The generators occur in
degrees one or two and the relations in degrees two or three. If r=1, apply Lemma
1. If k=1, G is a (commutative) quotient of Q[x] and has a rational Hilbert series.
The remaining possibility is r=k =2, which we now explore.

Let the generators of G be x and y and call the relations & and . We may assume
that « is not a multiple of 8 and vice versa in the free algebra H=Q(x, y), since
otherwise G would have a smaller presentation. By a slight refinement of the proof
of Lemma 3, taking into account the fact that each $”/ maps to the (m;—1)-
skeleton of VX, 8%, we can assume that a and f are decomposable. This means
that ¢ and § belong to H i, where H, consists of the positive degree elements of
H. Since they are images of generators of homology of spheres, @ and g are
primitive in the free Hopf algebra H. The severe restrictions on what & and g may
be make it feasible to consider all cases.

If deg x=deg y =2, there are no three-dimensional elements for o and f to be. If
deg x=1, deg y=2, the only possibility is & =x2, 8=[x, ], whence G = QIx, y]/(x*)
has series (1 —2)~!. If degx=deg y =1, a primitive relation in degree two or three
must be a linear combination of either {x? [x, y], »*} or {[x% yl,Ix »*1}. Let K=
Ox, yy/{Ix% 1, [x, ¥*1>. K is the universal enveloping algebra of L, K=U(L),
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where L is the positively graded Lie algebra spanned by {x, v, x7, y% {x, 7]} with
higher brackets vanishing. As a and A cannot be multiples, (a, 8) contains
{3 v), [x v*D), and G = OKx, ¥)/{a, B is either K or a quotient of K. Either way,
G is the universal enveloping algebra of a nilpotent graded Lie algebra, implying
that G has a rational Hilbert series.

In view of Lemmas 2 and 4, the smallest Q-irrational complex must have at least
four cells. If it has precisely four cells, it must have dimension six or greater.

3. Construction of the minimal complex

The remainder of the paper is devoted to demonstrating the existence of a four-
cell complex W with Pgy-(2) irrational and dim W= 6. Ufnarovsky [8] has given an
example of a Hopf algebra with irrational Hilbert series. His example has two
generators, in degrees two and four, and two relations, in degrees ten and fourteen.
It can be used to construct a four-cell Q-irrational complex with cells in dimensions
3, 5, 12, and 16. The minimal complex W presented here was inspired by Ufnarov-
sky's and has certain similarities to ii.

W is the mapping cone of a map f=f,V/f,:S’vS’ =82V S?, which we now
specify. Let x and y denote the generators of m,(S2V 8% x,) =Z@Z as well as the
corresponding generators of H,(£(S*Vv S?); Q). The attaching maps f; and f> are
given by the Whithead products

[fl] = [.\', [X, [.l', y”] and [f;’] = [[[X, .-V]9 _}7], y]

Let « and g denote the corresponding elements of H,(2(S%V $?); 0). In view of
Theorem B, it suffices to show that the graded Hopf algebra G =Qx, y)/{a, B) has
an irrational Hilbert series.

We will show that G= U(L), where L is a certain positively graded Lie algebra
over Q having rank r, in dimension n, where r,=2-cos(nn/2) for n=1. The
Hilbert series of G is then an infinite product

[ (1+2)" (Hzﬁ)’»‘} (1+z5)'-*']
P: = 3 "
© (1—;~)'2H(1_;4)'4 (1-z°y°
a2 A+ [a+2yY]
A= a-z% (1—:6)3]
ey LNV )
(l~z) [(1-422>H<1—23>H(l—z4>}

P(z) is casily seen to be a transcendental function, since it converges in the open unit
disk, vet

lim (z - D P(z) =
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for any finite . We may also compute P(z) by the Jacobi triple product identity ([1],
Theorem 2.8) to obtain the interesting but clearly irrational series

Pz) '=i-2z+22* 2%+ 4+ (= 1)) + -

We shall describe L, and only at the end observe that U(L) has the presentation
which defines G. To define L, we will make use of the correspondence between
positively graded Lie algebras and commutative differential graded algebras [6]. We
describe a specific differential graded algebra (AV,d), where V is a graded
vector space with rank r, in dimension 7 + 1, and compute H*(AV, d) for k=1 and
k=2. Here k refers to the homological or ‘wedge’ grading of AV, so each
Q-module H*(AV,d) is still graded by dimension. Since (H*(A V,d)),, agrees with
Ext’(‘,('z) (0, Q) for the corresponding L, we will have found the minimal presenta-
tion we seek for U(L).

A basis for V in dimension 2k (k=1) we denote as {a;_, b5 _1}. In dimension
4k —1, V is spanned by { P4 _2, Gax_2,Cax—2} and in dimension 4k +1 by {cy}.
The choice of subscripts corresponds to the degrees of the duals in L, and it implies
that d, which has bidegree (+{, + 1), actually preserves subscript sums on any homo-
geneous element of AV,

Since the differential d satisfies d(xy)=d(x)y+ (—1)%8*xd(y), we need only
specify d on a basis for V. For k=1, set

d(a;y=d(b))=0,
d(p))=at, d(g,) = b1, d(c;)=a,b,,

2k~ 1
d(ag)=— Z @i 1Cap-2i T Z Dai—2bag_siv1s

i=1 {=1

2k~ 1

d(bsy 1) = E (=1)'by_yCay - z:+z Q4i- 204k 4i+ 1>

k o
d(Ca) = Z Dai-29ak-ai+2F ‘L (=D'ay_1bag_2i 41>

2k k
d(agy 1))=Y (=1'ay_\Cop-2i42— _Zl Dai- 264k 4+ 3
i=

i=1

2k k
dbax 1))=Y by 1Cak 2iv2— L Gai— 204k i+ 3>
i=1 i-1

k- ~1
A(Pags2) =% 1 +2 Z @i+ gy - 2i+1 12 Z Pai+2Cak - ai»

i=0 i=0

k-1 k-1
— h2 ©w —_ .
AGax+2)=brk s 1 +2 L by 1Bag_2is1—2 ZD Q4i+2Cak - 4i»
i=0 i=
2k
d(car+2)= ) @iy 1bag-2i41-

=0



218 D.J. Anick

It is a straightforward but tedious calculation, which we omit, to verify that d*=0.
Supplerrenting the total degree and homological degree gradings, we make AV into
a trigraded algebra by setting

e(ay_)=1, e(Pax-2)=2, e(by_1)=-1, e(Qak-2)= -2,

e(Cyr - 2) = e(cy) =0. The above formulas show that d preserves e-degree, so each
H*(AV,d) will be bigraded, by total degree and e-degree.

H'(AV,d) has rank two, with {a,,b,} being a basis. This is clear since all
generators occur in distinct bidegrees and d vanishes only on @, and b,.

4. Compatation of H>(AV,d)

Computing H*{AV,d) is somewhat more complicated. We shall prove that
H*(AV,d) is zero except in bidegrees (6, £2), where it has rank one. The generators
of HX(AV,d) are p,c,+asa; and gyc,+ b;b;. Let

d'=d|,: V=AW and d"=d| AWV -AV.

Because d respects the trigrading of AV, we may compute H*(AV,d) by consider-
ing ker d” and im d’ restricted to each bidegree separately.

In bidegree (m, n) #(6, +2), im d’ has rank either zero or one and we wish to show
that ker d” has the same rank. In (6, +2), imd’=0 and we will see that rank
(ker d”) = 1. Use the bases consisting of monomials for A*V and A3V, and assume
that all vectors are expressed as linear combinations of monomials. y,(f) denotes
the coefficient of the basis element x in the linear combination ¢. If A4 is a basis for
a vector space M, we say that xe A occurs in t if and only if y (#)#0.

To show rank(ker d”) =0 in a particular bidegree we will let 7€ ker d” and show
that no monomial of A°V occurs in r. When we want to show that
rank(ker d”)<1, we will show that some monomials do not occur in an arbitrary
7€ ker d” and that those which do occur must have their coefficients in some fixed
ratios to one another. This implies that any non-zero element of ker d” is a scalar
multiple of any other, i.e., rank(kerd”)<1.

We make repeated use of the following three lemmas, which also introduce some
shorthand notation. In them, ¢: M—N is a linear transformation between two
vector spaces over a field F. A denotes a basis for M and B is a basis for N.

Lemma 5. If ve B occurs in ¢(x,) for some x,€ A but does not occur in any ¢(x)
Jor xe A - {x}, then y, (1) =0 for any te ker ¢. We describe this situation by the
shorthand *‘y=x,:0"".

Lemma 6. Suppose x,,x,€ A, ve B, and y occurs in ¢(x,) and ¢(x,) but not in ¢(x)
for xe A -{x;, 2}, Let A=~y (@(x2))y(@(x)))"". Then y, (1)=Ay,(1) for any
r€ker @. This we express as “‘v=x,:Ax,". If in addition we know that y, (1)=0
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Jor any teker ¢, we may deduce that v (1) =0 for all teker ¢. This situation is
denoted ““(y; x\)=x,:0"".

Lemma 7. Suppose x|, x,, x;€A, ye B, and y occurs in ¢(x;), i=1,2,3, but not in
@) for xe A—{x, X3, X3}. Let A==y, (d())yy(@(x\)"". If y,(1)=0 for all
teker ¢, then y,(v)=Ay. (1) for any teker¢. The shorthand for this is
‘(v x3)=x1:Ax,”°. The converse also holds and we express it by
(3 X1, x2)=x3:0”.

Proofs. Lemmas 5, 6, and 7 all follow from the observation that whenever
teker ¢,

0=y,(0)=y,(8(1) = }{v< EA yx(r)cb(x))
= ¥ 7070x)= E Vx(Dyy(@(x)).

xeA xeA

The notation *‘x; : Ax,”’ by itself means that y, (1) =A4y,,(r) whenever t€ker ¢.
Note that x; : Ax, and x, : x5 together imply x; : A1’x;. Now we take ¢ =d” and see
what happens in each possible bidegree. k is any positive integer. Lemmas 5, 6, and
7 are relevant because each cubic monomial of A%V occurs in at most three of the
"-images of quadratic monomials.

In bidegree (4k+2,4), imd’'=0

411 ViMvgsl i s — U,

'I\)

@\04;-3Dak - 4i+2=>Pai—2Pak - 4i+2°0, 1=<isk/2.

In bidegree (5,3), imd’=0 and a? =p,a,;:0.

In bidegree (4k+1,3), k=2, imd’'=0.
A3 54k - 4i+ 1= Paj—20ak-4i+1 -0 1If 2<i<k.
(@f a4 35 Pax - 201) = Pattyy 3 : 0.

In bidegree (4k +3,3), imd’'=0.
A\Cai- 304k —4i+ 3= Dai— 284k -4i+3:0, 1=si=k.

In bidegree (6,2), imd'=0. aic,=asa,:p,c,. A basis for (AZV)(M) is
{a;a,, p,c,}. Since d”(aja,+p,c;)=0, kerd”=span(a;a, +p,c;), and (kerd”/
im d'), 7, has rank one.

In bidegree (4k+2,2), k=2, imd’'=0.

P2C4i—4Cak —4i+ 2= Dai-2Cak -4i+2:0, 2<i<k.
(Pak-201by; Pag_263) = a1y, : 0.

2 . .
(@iCax— 25 @1Q4p - )= PrCag -2 0.

2 . -~ : ;
(@3 1Cak~4i+25 Dai-2Cak-ai+2) = A2 1Mz 2i41:0, 1<isk.
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In biclegree (4,2), im d’=span(a}) = (A?V )4 2 =ker d".
In bidegree (4k,2), k=2, rank(imd')=1.

PaPsi-2qsk - 4i-2=P2Cak 4 Pai-2Cek—ai»  1<i<k.

D28y \bai_ai-3=P2Cak— 41 Qai 1 Qap—sim, 1=i<k/2.

D204 _3bap _si 12 P2Cak_a:Qgi 3@y 41, 1=i<k/2.

2
D20 1Dy 3= PaCay 4205 .

In bidegree (5,1), rank(imd’)=1 and aib,;=a,c, : —p,b,.
In bidegree (4k+1,1), k=2, rank(imd’)=1.

aias by 41201043104 (Cay gy 1Sk
In particular, a;cy; _;: @04 4.
A\ CrCak - 4= A3Ca _ 4 2 g - 302
a3y, 1Dy i s=A3Cax 41044 Cap_gi-2y 1=i<k—1.
So aycy 2:ay, jCy -y, fOr any i, 1<i<2k. Lastly,
@3, 10y 4 =2y (Cop gt Py 2bag _wiy, 1Sisk
In bidegree (4k + 3,1), rank(imd’')=1.
APy 2qak 442281 Cax t Py 2bsy _4ix, 1=isk
ayay, by 4. macyi—ay Coo4., SISk,
In particular, a;cy @ —a3c4 -
aay, lb.zkA 3 -320A3Cy; 2 —Ay;, 1Cak - 3)» l<i<k.

In bidegree (4,0), im d'=span(a; b,) = (A*V)4 o, = ker @”.
In bidegree (44,0), k=2, rank(imd’)=1.

@Ay Ay g =W by yiay by 4o, 1=i<k.
In particular, a\by, 3 :a3by _s.
Ay 3Quk g 2= @by siay by 4., 1Sk
Pabyby s=azby s:iay 3b).
@1€s; 3by g Wby 3,04 3Dy 4 1)=Cy g0y 40200, 2=i<k.
In bidegree (6,0), rank(imd’)=1.
a%ﬂ:”ﬂ:ﬂzi“a;bz and szlz""ﬂ:qz:a}b)-

In bidegree (4k +2,0) for k=2, we need a more sophisticated argument.
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) k .
Ari1Cub2u 214 1= 821 Dag i1 1 (1) Qg 21102 — 241, 1Pk
2 ) ; .
@i 1GQak-2i+2=2 A2 1 bag 21y 1 (1) Pai_2Quk—4iv2, 1<isKk.

By considering the three monomials in whose d”-images x = a,b,;_ ;¢4 5 Occurs,
we get

Vxd (@ bg-1)=(=1),  pd"@g-2i4102_1)=1,
¥xd"(CriCap-2) = (—1)*! if i%k.
From this it follows that, for 1 <i<k,

~Yayby (T) + (_ l)i},‘hk 2+ lbli—l(t) + Yescu m(T) =0

for any r€kerd”, hence

Yp2qu »z(r) = Yok -+ 21’:‘4.‘—2(7'-) + yCZiCJk—Zi(T) =0,

when tekerd”, 1=i<k. A similar consideration of the monomials in whose
d"-images p,qai_1C4 . 4 Occurs gives, for 1<i<k and istk/2,

zypzqak - 2(‘!’) - zymk —di+ 244:‘-2(1) + yt‘ut‘ud,(r) = O' TE ker d"'

These two equations together give 2y, ,(T)=7cuc, (1) for tekerd”, i.e.,
C4iCap—ai - 2C2iCax i for 1 i<k, i#k/2. If k is even and i = k/2, we are considering
coefficients of c;c3;. But pagop_26k= P3Gk~ 2 Pax + 282 -2, Whence

; 1%
ayby (1) %ay by,
and
(@1bg - 1C3x5 QrDgge 1, @3p 1B 1) = €032 0.

By considering the subscripts of ‘¢’ to be modulo 4k, we see that c;c;3;: 0 when
k is even and that c,;Ca;_4;: 2¢5Car - 2 foOr any i, except i=0, £k/2, k (mod 2k).
Furthermore,

CysiC_3si: 2C2s~ 1;C_as-1; 00002 25 lCZic4k—-2i

for s=1 as long as 2°~'i#0 or k (mod 2k). Now suppose 1<i<k with i#k/2. If
2k l 2% for some s=1, let s be the smallest integer with this property. We must have
s=3 and 2°" li=k (mod 2k), so k is even and ¢ ¢y, : £2°72¢,;C44 o, implying (since
char Q+#2) cyicy 5+ 0. If instead 2% 0 (mod 2k) for any s, choose s=1 and r>s
such that 27=2°% (mod 2k). Then

s Lot —_r—s
CyriC 2 1 2775¢35€ 25y =277 CriC o).

I.e., the coefficient of cy;c_,,; in any teker d” equals 2’ ~° times itself, and this
can only happen in Q if that coefficient is zero. c,;c_5,:0, and since
CoriConri 1277V 0iCan—2i» We have cyC4_2;:0 as well. We have shown that
CyiCax ;-0 for any i, 1<i<k.

Using this information we easily obtain fixed ratios among the coefficients of the
other monomials of (A*V )y, 2.0)-
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@By — 2i- 1Cai3 CaiCa—2) = @ bag 1 1 (=D g by _pio g, 1<i<Kh;
we already have @y 1bay _ 241 (= D¥@a 2 1bak_2is1, SO

by 1 (=1Vayi bag_2ioy for 1=i<2k.
a1 qax- 2= @by 1 —P2qux - > and

(P2Gak - 4i- 2€4is Cak - 2iC4) = P2qak -2 * Dai+ 2ok -4i-2> 1Si<k, i#k/2.

We have seen pyQax-2: P +2q2% -2, fOr k even.
To deal with the elements of negative e-degree, we make use of a certain symmetry
in AV. Define an involution u: AV—=>AV by

@y ) =by_1, by _)=ay_,,
U Pak ) =Gk - MQai-2)=Pak—2  He)=(=D""1cy,

and extend u to a homomorphism of rings. It is easy to check that du=ud, so u
induces an isomorphism of cohr mology which negates e-degrze. H*(AV, d) is sym-
metric in e-degree around zero, so H*(AV,d) must have just two generators, in
bidegrees (6, +2).

This completes the proof that a bigraded Lie algebra L exisis with two generators
in bidegrees (1, +1) and two relations in bidegrees (4, +2). We need only confirm
that U(L) has the presentation stated earlier. Calling the generators x and y (with
e(x)=+1, e(y)=-1), the relations must be [x, [x,[x, ¥]]] and [[[x, ¥], ¥], ¥], since
these and their scalar multiples are the only elements of the proper bidegrees in the
free Lie algebra on {x, y}.

Note added in proof

It has since come to my attention that the facts we deduced about the Lie algebra

L are also implicit in the paper by Kac and Vinberg, Adv. in Math. 30 (1978)
137-155.
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