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1. Introduction 

It has recently been shown [2] that there is a finite simply-connected CW-complex 
X whose loop space has an irrational Poincare series, i.e., 

&x(Z) = ngO RankQ &~(a% Qk" 

is not a rational function of z. A space with this property is said to be &&irrational. 
In this paper we show that any Q-irrational CW-complex must have at least four 
cells, excluding the base point. We also construct explicitly a four-cell Q-irrational 
space W with dim W= 6 and prove that this dimension cannot be reduced without 
increasing the number of cells. 

2. Lower bounds on the size of W 

We call on several well-established facts in proving that a four-cell complex in 
dimension five or lower or a three-cell complex in any dimension is Q-rational. 

Theorem A. Let X be a l-connected CW-complex. There is a CW-compiex Y with 
the rational homotopy type of X such that Y has one cell for each generator of 
H,(X; Q). If ;1’ is jTnite, Y has the same number or fewer cells in each dimension 
as X. Furthermore, 2’ .may be constructed so that for each n 2 1, the (n + 1 )-cells of 
Y are attached to the (n _ 1 )-skeleton Y n - ? 

This is a consequence of Sullivan’s theory of minimal models [7]. 

Let f : SX -+SY be a map between l wo suspensions, with X and Y path- 
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connected, and let Z be the mapping cone 0-f f. Z is &rational if and only 
quotient Hopf algebra H,@SY; Q)/(im(SEf )i,> has rational Hilbett series. 

if the 

Here H,(S2SY; Q) is viewed as a graded Hspf algebra over Q and (im(lnf),) 
e two-sided ideal generated by the image of &(fzSX; @) under (Qf),. 

Theorem B is proved in [5]. 

Theorem C. I$ X and Y ate simply connected !&rational complexes, then XV Y is 
&?-rational. 

An exact formula for P n(xV y,(z) in terms of P&z) and P&z) is given in 151. 

Theorem D. Let H be a free associative graded algebra, finitely generated over a 
field F, and let w be a single homogeneous element. The quotient algebra G = H/(w) 
of H by the two-sided ideal w generates has a rational Hilbett series. 

This is proved in 131. 
An immediate corollary of these is: 

Lelmma I. Let f : Sm -+ V,“_ 1 Sdl with m 12, di 12, and let Z be the mapping cone 
off. Then Z is Dtational. 

Proof. If CL) E H,,, _ l (SZY; Q) generates the ring H,(%?; Q), Theorem B implies 
that Z is G-rational if 

H, 
( 

R i/ Sdl; 
I= I 

has a rational Hilbert 

Q) 4Wf MN> 

series. This follows from Theorem D, since by [4] 
H*(S2V,“_ i Sdi; Q) is a free 

J,emma 2. A I-connected 
sionai) cells is &!-rational. 

Proof. Since 

associative algebra. 

CW-complex X with three or fewer (positive dimen- 

n,(S”)@Q= 
Q if k=n, or k=2n-1 and n is even, 

0 otherwise, 

le~rem A implies that the only rational homotopy types for a two-cell complex 
Y are Qpt), S”* V Smz, and X0 = St” Ug e4”, where the attaching map for the last has 

f invariant. Each of these is G-rational by Lemma 1. Hf there is a third 
, it must be attached to one of these complexes. The 
a 1 is that of a mapping cone off: S”-’ -+X0. The 
topy oa‘ X0 in dimensions 4n - Z and above is 
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7&, _ 1(XO)@ Q = Q, generated, say, by [h]. Letting = denote rational homotopy 
equivalence, we have either X=X&S”, whence @rati * ,lality follows from 
Theorem C, or XzX&.J,. ,, e6” for some scalar il. In the latter case, the Serre spec- 
tral sequence in cohomology for the path fibration over X gives 

P**(z)=(l +z 2n-1)(1 _z8n-2)-1~ 

Lemma 3. Let X be a finite I-connected CW-complex with dim Xr. 5. Then X has 
the rational homotopy type of a mapping cone of a map between two wedges of 
spheres, 

f: \j Smj+(l@ 
9 

j=l i= 1 

where each mj = 3 or 4 and each di = 2 or 3. 

Proof. This follows directly from Theorem A. We may assume that the 4- and 
5-cells of X are attached directly to the 3-skeleton, whicl. in turn is obtained by 
attaching cells to the base point. 

Lemma 4. Let X be a l-connected C-W-complex with dim X5 5. Suppose that 
&(X; ‘7) has four or fewer generators, e.g., if X has four of fewer cells. Then X 
is Q-rational. 

Proof. Combining Theorem A and Lemma 3, we see that X is a mapping cone as 
in Lemma, 3, where r + kr 4. By Theorem B, the rationality of P&z) is equivalent 
to the rationality of the Hilbert series of a certain associative algebra G, which has 
a finite presentation with k generators and r relations. The generators occur in 
degrees one or two and the relations in degrees two or three. If r = 1, apply Lemma 
1. If k = 1, G is a (commutative) quotient of Q[x] and has a rational Hilbert series, 
The remaining possibility is r=k=2, which we now explore. 

Let the generators of G be x and y and call the relations cy and p. We may assume 
that a is not a multiple of p and vice versa in the free algebra HZ- Q(x, y), since 
otherwise G would have a smaller presentation. By a slight refinement of the proof 
of Lemma 3, taking into account the fact that each Smj maps to the (mj - l)- 
skeleton of V,!= I Sdi, we can assume that a and p are decomposable. This means 
that a and p belong to Hf , where H, consists of the positive degree elements of 
H. Since they are images of generators of homology of spheres, ix and p are 
primitive in the free Hopf algebra H. The severe restrictions on what a and p may 
be make it feasible to consider all cases. 

If deg x= deg y = 2, there are no three-dimensional elements for a and p to be. If 
cleg x= 1, deg y = 2, the only possibility is QT =x2, /? = [x, y], whence G = Q[x, y]/(x2) 
has series (1 - z) -l. If deg x= deg y = 1, a primitive relation in degree two or three 
must be a linear combination of either (x2, [x, y], y2} or { [x2, y], [x, y2]}. Let K = 
Q(x, y)/([g, y], [x, y2]). K is the universal enveloping algebra of L, M= U(L), 
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where L is the posi:ively granded Lie algebra spanned 
higher brackets vanishing. As cy and B cannot be 
([A-‘, y], [_Y,_v~]), and G= Q(x, ~>/(a; /?) is either K or a 

by {s y, x”, y’, [x, y]) with 
multiples, (a: p> contains 
quotient of K. Either way, 

G is the universal enveloping algebra of a nilpotent graded Lie algebra, implying 
that G has a rational Hilbert series. 

In view of Lemmas 2 and 4, the smallest &&irrational complex must have at least 
four cells. If it has precisely four cells, it must have dimension six or greater. 

3. Construction of the minimal complex 

The remainder of the paper is devoted to demonstrating the existence of a four- 
cell complex W with PS2&) irrational and dim W= 6. Ufnarovsky [8] has given an 
example cf a Hopf algebra with irrational Hilbert series. His example has two 
generators, in degrees two and four, and two relations, in degrees ten and fourteen. 
lt can be used to construct a four-cell Q-irrational complex with cells in dimensions 
3, 5, 12, and 16. The minimal complex W presented here was inspired by Ufnarov- 
sky’s and has certain similarities to it. 

I+’ is the mapping cone of a map f=fi vf2 : S5vS5 +S2vSz, which we now 
\pecifv. Let x and y denote the generators of n2(S2vS2, x0) =Z@Z as well as the 
corresponding generators of H,(Q(S’vS’); Q). The attaching maps f, and f2 are 
given by the Whithead products 

W-1 I = 1% i-v [A-* Ylll and [fil = i[k YL ~1, VI- 

1 ct u and /? denote the corresponding elements of H4(Q(S2~ S’); Q,* In view of 
Ihcorem B, it suffices to show that the graded Hopf algebra G = Q(_u, y)/(cr, A) has 
an irrational Hiibert series. 

We will show that G = U(L), where L is a certain positively graded Lie algebra 
over Q having rank r,, in dimension n, where r, =2 - cos(nn/2) for nz 1. The 
Hilbert series of G is then an infinite product 

P(z) is casiiy seen to be a transcendental function, since it converges in the open unit 
. yzr 
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for any finite k. We may also compute P(z) by the Jacobi triple product identity ([I], 

Theorem 2.8) to obtain the interesting but clearly irrational series 

p(Z) -i= i -2~+2~~-2~~+~~~+(-1)~(2)2~~+~~~. 

We shall describe L, and only at the end observe that U(L) has the presentation 
which defines G. To define L, we will make use of the correspondence between 
positively graded Lie algebras and commutative differential graded algebras [a]. We 
describe a specific differential graded algebra (/1 &d), where V is a graded 
vector space with rank r, in dimension n + 1, and compute Hk(A V, d) for k = 1 and 
k= 2. Here k refers to the homological or ‘wedge’ grading of /1 V, so each 
Q-module Hk(A k’, d) is still graded by dimension. Since (Hk(A V, d)), agrees with 
Ext:gJVk(Q, Q) for the corresponding L, we will have found the minimal presenta- 
tion we seek for U(L). 

A basis for V in dimension 2k (k 11) we denote as {@k _ 1 9 blk _ 1 }. In dimension 
4k- 1, v is spanned by {p4k_2, q 4k _ 2, c4k _ 2 ) and in dimension 4k + 1 by { c4k } . 
The choice of subscripts corresponds to the degrees of the duals in L, and it implies 
that d, which has bidegree (+ 3, + ‘I j, actually preserves subscript sums on any homo- 
geneous element of /1 V. 

Since the differential d satisfies d(xy) = d(x)y + (- 1 jdeg “xd( y), we need only 
specify d on a basis for V. For kr 1, set 

d(U]) = d(b,) = 0, 

dtp2)=a:, d(q,) = b:v d&j = a1 bl 9 

Zk- 1 k 

&Q--d= - c $i- lC4k--2i + c P4i-2b4k-4i+ 1) 
i= 1 r-=1 

2k- I 

dCbdk-- *I= C (-l)‘b2i-- lC4k--2i+ i q4i--24k-4i-e 1, 
i= I i=- I 

k .?k 

d(C4k)= c P4i-2q4k-4i+2+iF, (-1)‘a2i-1b4k-2i+1~ 
i= I 

d(a4k+ 1)= : (-l)‘a2i- 1C4k-Zi+2- i P4i-2b4k-4i+3r 
i= 1 i=l 

2k k 

O’(b4k+ I$= c b2i- lC4k-2i+2-- c q4i-Za4k-4i+3g 
i- I i- I 

k-l k-i 

d(p4k+2)=a&+ I + 2 C $i+ Ak-2i-t I+2 C p4i+2C4k-4iy 
1-O I = 0 

k-l k-l 

d(q4k+2)=bZk+ 1 -t-2 c b2i+ 1b4k-2i+ 1 -2 C q4i+2C4k-4i, 
I=0 r-o 

2k 

d(c4k+2)= c a2i+ lb4k-2i+ l* 
110 
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It is a straightforward but tedious calculation, which we omit, to verify that d2=0. 
Supplementing the total degree and homological degree gradings, we make A V into 
a trigradcd algebra by setting 

4a2k-d= I, e(p4k-2) = 2, e(b2k-d= -1, dq4k-2) = -2, 

4(cjk_ 2) = e(cjk) = 0. The above formulas show that d preserves e-degree, so each 
Hk(A V&i) will be bigraded, by total degree and e-degree. 

Hi (A P, d) has rank two, with {a,, bl} being a basis. This is clear since all 
generators occur in distinct bidegrees and d vanishes only on al and bl. 

4. Computation of H2(fl V,d) 

Computing HZ{A ll/,d) is somewhat more complicated. We shall prove that 
H’(A V,d) is zero except in bidegrees (6, *2), where it has rank one. The generators 
of H2(A V, d) are p2cZ + a3a1 and q2c2 + b3b1. Let 

d’=d IIf: V-+A2V and d”=d~,,+A2V+A3V. 

Becau!? d respects the trigrading of A V, we may compute H2(A V, d) by consider- 
ing ker d” and im d’ restricted to each bidegree separately. 

In bidegree (nj, n) #(6, -t2), im d’ has rank either zero or one and we wish to show 
that ker d” has the same rank. In (6, &2), im d’==O and we will see that rank 
(ker d”) = 1. Use the bases consisting of monomials for A2 V and A3 V, and assume 
that all vectors are expressed as linear combinations of monomials. y,Jt) denotes 
the coefficient of the basis element x in the linear combination t. If A is a basis for 
a vector space M, we say that A-E A occurs im t if and only if y,(f) #O. 

To show rank(ker d”) = 0 in a particular bidegree we will let T E ker d” and show 
that no monomial of A”V occurs in T. When we want to show that 
rank(ker d”)s 1, we will show that solme monomials do not occur in an arbitrary 
TE ker d” and that those which do occur must have their coefficients in some fixed 
ratios to one another. This implies that any non-zero element of ker d” is a scalar 
multiple of any other, i.e., rank(ker d“)s 1. 

We make repeated use of the following three lemmas, which also introduce some 
shorthand notation. In them, @: M+N is a linear transformation between two 
kcitor spaces over a field F. A denotes a basis for A4 and B is a basis for JV. 

Lemma 5. If y E B occurs in @(x,) for some x1 E A but does not occur in any G(X) 
for XEA - (Xl 1, rhen y,., (5) = 0 for my P E ker @. We describe this situation by the 
shorthand ‘ ‘y = x, : 0 “. 

x2 E A, y E R, and y occurs in 0(x,) and @(x2) but not in e(x) 
x2 >. Let A = - yJ@(x2))y,,(qgs, )) - ‘. Then Y,,(T) = &$) for any 

is we express us ‘ ‘_v * x 1 : Ax2 ’ ‘. If in addition we know that y,,(r) = 0 
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for any r E ker @, we may deduce that v,,(t) = 0 for al1 r E ker @. This situation is 
denoted “(y; x1) 2x2 : 0”. 

Lemma 7. Suppose x1, x2, ~3 E A, y E B, and y occurs in #(xi), i = 1,2,3, but not in 
461 for xd - (~1, -5, ~3). Let A= -Y~(~(xz))Y~(#(xI))-~. lf v,,(r)=0 for all 
TE ker @, then v,,(-r) =ily,,(r) for any TE: ker #. The shorthand for this is 
“(y; x3)*x* : Ax2”. The converse also holds and we express it by 
“(y; X1, X2)*X3 : 0”. 

Proofs. Lemmas 5, 6, and 7 all follow from the obsxvation that whenever 
TE ker $J, 

The notation “xl : Ax2” by itself means that v,,(r) = AyJr) whenever TE ker #. 
Note that x1 : Ax2 and x2 : il’x3 together imply x1 : Wx3. Now we take @ = d” and see 
what happens in each possible bidegree. k is any positive integer. Lemmas 5, 6, and 
7 are relevant because each cubic monomial of A3V occurs in at most three of the 
/r-images of quadratic monomials. 

In bidegree (4k + 2,4), im d’= 0. 

ala4i-3P4k-4i+23P4i-2P4k-4i+2 ~0, &is k/2. 

In bidegree (5,3), im d’= 0 and a: =sp2al : 0. 
In bidegree (4k + 1,3), k> 2, im d’= 0. 

a3a4i-5%k--4i+ 1 =$P4i-204k-4i+ 1 :O if 2risk. 

In bidegree (4k + 3,3), im d’ = 0. 

ala4i- 304k-4i+3 *P4i-2a4k-4& 3 l 
‘0, &irk. 

In bidegree (6,2), im d’ = 0. a:c2* a3al : p2c2. A basis for (A2 I+,,,, is 
{a3a,, p2c2}. Since d”(a3al +p2c2) = 0, ker d” = span(a3a, +p2c2), and (ker d”/ 
im d’),,,, has rank one. 

In bidegree (4k + 2,2), k> 2, im d’= 0. 

(P4k-2albl; P4k-2CZbv4k- 1 : 0. 

(&4k-2; ala4k- dgP2c4k-2 : o* 
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In bidegree (4,2), im d’ = spa&) = (A2 VJA 2) = ker d”. 
In bidegree (4k, 2), k22, rank(im d’) = 1. 

P2 P& - 2cl;tli - 4i - 2 3P2c4k-4 : P4i-LCbk-4i, l<i<k, 

p2a4i-Ib4k-4i-3jp2C4k-4 :a4i_1aak_4i-1, f Si<kD. 

p2a2k-1b2k-3*p2~~k-4 :2aik_l* 

In bidegree (5, l), rank(im d’) = 1 and afbl *ale2 : -p2bl. 
In bidegree (4k + 1, 1), k 2 2, rank(im d’) = I. 

al C2C4k - 4 * a3c4k -4 : a4k _ 3’c2. 

a3a4,+ ,b4b -jr--5 *$3C4k- 4 :a41+ lC4k-4i-2* l(:i<k- 1. 

So alcjx ;1 : al, . 1 c’jh _ zI for any i, 1 zs i<: 2k. Lastly, 

ai, ,bdk ~,+~3a~I_~C~k_~,:-p~i_~b4k_4r+~, lsisk. 

In bidegree (4k + 3, I), rank(im 6’) = 1. 

a2a4l+ I b 4k- .W3a3c4k-2 :-a4,+IC4k-4i9 lsi<k. 

In bidegree (4, O), im a”= span(a, b,) = (AzQ4,,, = ker d”. 
In bidegree (ilk, 0), k > 2, rank(im d’) =. 1. 

af+ =pzqz : -03 and pzhf*p~q3 : a,b,. 

cgrcc (4iJ? + 2, ) for k> 2, we need a more sophisticated argument. 
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a2i-Ic2kb2k-2i+1*a2i-1b4k-2i+1 :(-1)ka2k+2i-Ib2k-2i+1, Is&k. 

di- 144k-4i+2 *a2i- lb4k-2i+ 1 : (-l)‘p,i_2q4k_4i+2, 1 risk. 

By considering the three monomials in whose &‘-images x = al b2i _ 1 c4k _ 2i occurs, 
we get 

&d”(& b4k- 1) = (- l)‘, Yxd”(a4k-2i+lb2i-1)=1, 

Y,d”(C2iC4k_2i)=(-l)i” if i#k. 

From this it follows that, for 15 i< k, 

for any r E ker d”, hence 

when T E ker d”, 1 pi <k. A similar consideration of the monomials in whose 
d”-images p2 q4i _ 2 C4k _ 4i occurs gives, for lsi<k and i it k/2, 

2yP2%k 2 (7) - 2yP*k -4r+m-2 (7) + &.&,&,,(7) = 0, 7 E ker d”. 

These two equations together give 2yCzlCdk Jr) = ~~~,~~~_~,(r) for TE ker d”, Le., 
CJiC4k_4i : 2C’JiC4k_2i for 1 Si< k, i#k/2. If k is even and i = k/2, we are considering 
coefficients of ck C3k. But P2q2k-2C2k*P2q4k-2 :P2k+242k -2, whence 

and 

By considering the subscripts of ‘c’ to be modulo 4k, we see that ckc3k : 0 when 
k is even and that C4iC4k _ 4i : 2rziC4k_2i for any i, except isO, &k/2, k (mod2k). 
Furthermore, 

C2SiC_2Si Z 2C2S- liC_25 Ii I ‘** Z 2”- ‘C2iC4k_2i 

for sL 1 as long as 2S-1 i+O or k (mod 2k). Now suppose 1~ i< k with i#k/2. If 
2k 125’ for some SL . l, let s be the smallest integer with this property. We must have 
S2 3 and 2S- ‘i= k (mod 2k), So k is even and c&k : Z!ZZsv2C2iC4k _ 2i, implying (since 
char Q # 2) C2iC4k _ 2i : 0. If instead 2?+0 (mod 2k) for any s, choose sr 1 and r>s 
such that 2’i=29 (mod 2k). Then 

I.e., the coefficient of C2riC__)r; in any 7~ ker d” equals 2’-’ times itself, and this 
can only happen in Q if that coefficient is zero. CzriC_lri : 0, and since 
C2riC_z’i 12 r- 1C2iC4k-2i, We have C2iC4k _2i . l O as well. We have shown that 
CziCJk_2i: 0 for any i, 1 &<k. 

Using this information we easily obtain fixed ratios among the coefficients of the 
other monomials of (/1’v)@k + z,o). 
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(albJk_?,_,C2i;C2ic~k_?i)“a1b4k-I :(-l)‘ax+1b4k.-2i--I, l=i<k; 

WC already have aZ,_Ib4k_~,+~ :(-lYazk,zi-1 b Zk-2i+ly SO 

a,bdk_, :(-I)‘a2i+rb4k_2i-~ for lsi<2k. 

afg,k-z=>a,b4k- 1: _P244k - 2 and 

(P2q4k-4i-ZC4i; c4k-4ic4i)aP2q4k-2 :P4i+2q4k-4i-2, 1 rick, i#kk/2. 

We have seen &q& _ 2 : &+ 2q2k _ 2, for k even. 
To deal with the elements of negative e-degree, we make use of a certain symmetry 

in /t I/. Define an involution p : A V+A V by 

jd%k- l)=bZk- 1, /&k-,)=aZk+ 

/dpjk--2)=@$k-:, ~~q4k-2) =P4k-2, /dc2k) = (-- ljk+ ‘c2k, 

and extend ,u to a homomorphism of rings. It is easy to check that d,=pd, so y 
induces an isomorphism of cohrmology which negates e-degree. H*(A V, d) is sym- 
metric in e-degree around zero, so H2(A V, d) must have just two generators, in 
bidegrees (6, + 2). 

This completes the proof that a bigraded Lie algebra L exists with two generators 
in bidegrees ( I, + 1) and two relations in bidegrees (4, +2). We need only confirm 
that U(L) has the presentation stated earlier. Calling the generators x and y (with 
4(x’)= 01, e(y)= - 11, the relations must be [x, [x, [x, y]]] and [[[x, y], y], y], since 
these and their scalar multiples are the only elements of the proper bidegrees in the 
free Lie algebra on (x, y} . 

Sate added in proof 

It has since come 
t are also implicit 
13-J-155. 

to my attention that the facts we deduced about the Lie algebra 
in the paper by Kac and Vinberg, Adv. in Math. 30 (1978) 
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